Introduction To Applied Probability
Introduction To Applied Probability
HOW INTRODUCTION TO APPLIED PROBABILITY IS SET UP TO MAKE COMPLICATED PROBABILITY AND STATISTICS EASY
This course deals with concepts required for the study of Machine Learning and Data Science. Statistics is a branch of science that is an outgrowth of the Theory of Probability. Probability & Statistics are used in Machine Learning, Data Science, Computer Science and Electrical Engineering.
This 35+ lecture course includes video explanations of everything from Fundamental of Probability, and it includes more than 35+ examples (with detailed solutions) to help you test your understanding along the way. Introduction To Applied Probability is organized into the following sections:
Introduction
Some Basic Definitions
Mathematical Definition of Probability
Some Important Symbols
Important Results
Conditional Probability
Theorem of Total Probability
Baye's Theorem
Bernoulli's Trials
Uncountable Uniform Spaces
Fundamental Course in Probability for Machine Learning, Data Science, Computer Science and Electrical Engineering
Url: View Details
What you will learn
- Basic Definitions related to Probability Theory
- Mathematical Definition of Probability
- Important Symbols and Results related to Probability Theory
Rating: 3.8
Level: All Levels
Duration: 4 hours
Instructor: Shilank Singh
Courses By: 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
About US
The display of third-party trademarks and trade names on this site does not necessarily indicate any affiliation or endorsement of course-link.com.
View Sitemap