Data Quality Fundamentals
Data Quality Fundamentals
Data quality is not necessarily data that is devoid of errors. Incorrect data is only one part of the data quality equation. Managing data quality is a never ending process. Even if a company gets all the pieces in place to handle today’s data quality problems, there will be new and different challenges tomorrow. That’s because business processes, customer expectations, source systems, and business rules all change continuously. To ensure high quality data, companies need to gain broad commitment to data quality management principles and develop processes and programs that reduce data defects over time.
Much like any other important endeavor, success in data quality depends on having the right people in the right jobs. This course helps you understand key concepts, principles and terminology related to data quality and other areas in data management.
Understand key concepts, principles and terminology related to Data Quality.
Url: View Details
What you will learn
- Determine data quality requirements by studying business functions, gathering information, evaluating output requirements and formats.
- Profile select data sets to ensure quality and develop the data visualizations necessary to both manage and communicate data quality.
- Coordinate business efforts to deliver data that is fit for use for use in critical processes, analysis and reports.
Rating: 4.07143
Level: Beginner Level
Duration: 3 hours
Instructor: Sid Inf
Courses By: 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
About US
The display of third-party trademarks and trade names on this site does not necessarily indicate any affiliation or endorsement of course-link.com.
View Sitemap