Deep Learning with Python and Keras




Deep Learning with Python and Keras

This course is designed to provide a complete introduction to Deep Learning. It is aimed at beginners and intermediate programmers and data scientists who are familiar with Python and want to understand and apply Deep Learning techniques to a variety of problems.

We start with a review of Deep Learning applications and a recap of Machine Learning tools and techniques. Then we introduce Artificial Neural Networks and explain how they are trained to solve Regression and Classification problems.

Over the rest of the course we introduce and explain several architectures including Fully Connected, Convolutional and Recurrent Neural Networks, and for each of these we explain both the theory and give plenty of example applications.

This course is a good balance between theory and practice. We don't shy away from explaining mathematical details and at the same time we provide exercises and sample code to apply what you've just learned.

The goal is to provide students with a strong foundation, not just theory, not just scripting, but both. At the end of the course you'll be able to recognize which problems can be solved with Deep Learning, you'll be able to design and train a variety of Neural Network models and you'll be able to use cloud computing to speed up training and improve your model's performance.


Understand and build Deep Learning models for images, text and more using Python and Keras

Url: View Details

What you will learn
  • To describe what Deep Learning is in a simple yet accurate way
  • To explain how deep learning can be used to build predictive models
  • To distinguish which practical applications can benefit from deep learning

Rating: 4.60526

Level: Intermediate Level

Duration: 10 hours

Instructor: Data Weekends


Courses By:   0-9  A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z 

About US

The display of third-party trademarks and trade names on this site does not necessarily indicate any affiliation or endorsement of course-link.com.


© 2021 course-link.com. All rights reserved.
View Sitemap