Ensemble Machine Learning in Python: Random Forest, AdaBoost
Ensemble Machine Learning in Python: Random Forest, AdaBoost
In recent years, we've seen a resurgence in AI, or artificial intelligence, and machine learning.
Machine learning has led to some amazing results, like being able to analyze medical images and predict diseases on-par with human experts.
Google's AlphaGo program was able to beat a world champion in the strategy game go using deep reinforcement learning.
Machine learning is even being used to program self driving cars, which is going to change the automotive industry forever. Imagine a world with drastically reduced car accidents, simply by removing the element of human error.
Google famously announced that they are now "machine learning first", and companies like NVIDIA and Amazon have followed suit, and this is what's going to drive innovation in the coming years.
Machine learning is embedded into all sorts of different products, and it's used in many industries, like finance, online advertising, medicine, and robotics.
It is a widely applicable tool that will benefit you no matter what industry you're in, and it will also open up a ton of career opportunities once you get good.
Machine learning also raises some philosophical questions. Are we building a machine that can think? What does it mean to be conscious? Will computers one day take over the world?
This course is all about ensemble methods.
We've already learned some classic machine learning models like k-nearest neighbor and decision tree. We've studied their limitations and drawbacks.
But what if we could combine these models to eliminate those limitations and produce a much more powerful classifier or regressor?
In this course you'll study ways to combine models like decision trees and logistic regression to build models that can reach much higher accuracies than the base models they are made of.
In particular, we will study the Random Forest and AdaBoost algorithms in detail.
To motivate our discussion, we will learn about an important topic in statistical learning, the bias-variance trade-off. We will then study the bootstrap technique and bagging as methods for reducing both bias and variance simultaneously.
We'll do plenty of experiments and use these algorithms on real datasets so you can see first-hand how powerful they are.
Since deep learning is so popular these days, we will study some interesting commonalities between random forests, AdaBoost, and deep learning neural networks.
All the materials for this course are FREE. You can download and install Python, Numpy, and Scipy with simple commands on Windows, Linux, or Mac.
This course focuses on "how to build and understand", not just "how to use". Anyone can learn to use an API in 15 minutes after reading some documentation. It's not about "remembering facts", it's about "seeing for yourself" via experimentation. It will teach you how to visualize what's happening in the model internally. If you want more than just a superficial look at machine learning models, this course is for you.
"If you can't implement it, you don't understand it"
Or as the great physicist Richard Feynman said: "What I cannot create, I do not understand".
My courses are the ONLY courses where you will learn how to implement machine learning algorithms from scratch
Other courses will teach you how to plug in your data into a library, but do you really need help with 3 lines of code?
After doing the same thing with 10 datasets, you realize you didn't learn 10 things. You learned 1 thing, and just repeated the same 3 lines of code 10 times...
Suggested Prerequisites:
Calculus (derivatives)
Probability
Object-oriented programming
Python coding: if/else, loops, lists, dicts, sets
Numpy coding: matrix and vector operations
Simple machine learning models like linear regression and decision trees
WHAT ORDER SHOULD I TAKE YOUR COURSES IN?:
Check out the lecture "Machine Learning and AI Prerequisite Roadmap" (available in the FAQ of any of my courses, including the free Numpy course)
UNIQUE FEATURES
Every line of code explained in detail - email me any time if you disagree
No wasted time "typing" on the keyboard like other courses - let's be honest, nobody can really write code worth learning about in just 20 minutes from scratch
Not afraid of university-level math - get important details about algorithms that other courses leave out
Ensemble Methods: Boosting, Bagging, Boostrap, and Statistical Machine Learning for Data Science in Python
Url: View Details
What you will learn
- Understand and derive the bias-variance decomposition
- Understand the bootstrap method and its application to bagging
- Understand why bagging improves classification and regression performance
Rating: 4.74107
Level: All Levels
Duration: 5.5 hours
Instructor: Lazy Programmer Team
Courses By: 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
About US
The display of third-party trademarks and trade names on this site does not necessarily indicate any affiliation or endorsement of course-link.com.
View Sitemap